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Abstract—An analytical and experimental analysis has been carried out for the prediction of contact
conductance with interstitial plates and an expression has been developed in terms of known properties
and parameters. The model assumes that the interface is composed of similar macroscopic and microscopic
contact elements. These elements are considered to be made up of two cylindrical solids having a circular
contact in the middle of their surfaces facing each other with the gap between them filled with a
material of uniform conductance. Theoretical predictions are compared with experimental data in the
literature. Good agreement is found between theoretical and experimental values for thermal contact
conductance with interstitial plates. The theory shows that thermal contact conductance is a strong
function of hardness and thermal conductivity of interstitial plates as well as the surface texture of
contact element: and interstitial plates.

NOMENCLATURE

A, total apparent contact area;

B, fluid thickness number, §/a;

C, constriction number, b/a;

D, coefficient of series expansion;

E, modulus of elasticity [kg;/cm?];

J1,J2, semiaxes of contact region;

K, ky/ks, conductivity number;

M,  Meyer hardness [kg;/cm?];

P, apparent contact load per unit area
[kgr/em?*];

0, heat flow rate [W7];

S, temperature slope at z — co [K/cm), size
number;

T, temperature [°C];

U, conductance number, ud/k:

a, contact element radius [m];

b, contact region radius [m];

h, heat-transfer coefficient [W/em?*K];

k, thermal conductivity [W/cmK];

L, amplitude [cm];

P, pressure [kg;/cm?];

r, radius [m];

t, plate thickness [m];

u, thermal contact conductance [W/em?K];

z,r,  cylindrical coordinates.

Greek symbols

B, eigen-values;

4, gap thickness, roughness, effective fluid
thickness;

o, radius of curvature [m];

wavelength [u];
Poisson’s ratio.

*Presently, Visiting Professor in the Department of Mech-
anical Engineering, University of Miami, Coral Gables,
Florida, U.S.A.
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Subscripts
0, original;
1, solid 1;
2, solid 2;
a, actual;
C, contact;
£, fluid;
m, macroscopic, mean;
P plate;
s, mean 1.

The meanings of other symbols are given in the text
as they occur.

1. INTRODUCTION

THE BASIC cause of interface resistance is unevenness
of real surfaces. Surfaces which are said to be flat, in
fact are wavy with regular pitch owing to the periodic
nature of machining processes. Therefore, when two
solid surfaces are brought into contact, they actually
touch only at a limited number of spots, the aggregate
area of which is usually only a small fraction of the
apparent contact area. The remainder of the space
between the surfaces may be filled with air or another
fluid, or may be in vacuum. When heat flows from one
metal to the other, flow lines converge toward the
actual contact spots, since the thermal conductivities
of metals are so much greater than those of fluids.
This converging of the flow lines causes the thermal
contact resistance which is usually high compared to
the resistances offered to heat flow away from the
contact spots.

The importance of the problem of the interfacial
conductance (or resistance) has-attracted the attention
of many researchers [1-5] in the last few decades. One
important problem is the controlling (increasing or
decreasing) thermal contact conductances by intro-
ducing interstitial plates between the contact surfaces.
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A method of increasing the thermal contact conduc-
tance by filling the interfacial gap with highly con-
ducting materials was investigated by Cunningham
T6]. Joints made of aluminum and magnesium with
indium foil, silicone vacuum grease and filler grease as
interstitial fillers, were tested in vacuum for contact
pressures between 1200 and 6720 N-m™2, The inter-
stitial materials of indium foil and vacuum grease
produced approximately tenfold increases in thermal
conductance compared to unfilled joints. James and
Barry {7] indicated that the thermal conductance
between metal surfaces in contact can be increased by
placing metallic foils between the contacting surfaces.
Lead, aluminum, indium and copper foils were tested
between mild steel surfaces at low contact pressures.
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experimental results with the theory revealed good
agreement for all the test plates—with the exception
of mica—and for all test conditions.

2. DESCRIPTION OF MODEL

For the theoretical study, the interface is assumed
to be composed of a number of similar “macroscopic”
contact elements, each having a load bearing contact
region at its center surrounded by a non-contact
region (see Fig.1). Furthermore, each macroscopic
contact region can be assumed fo be made up of a
number of microscopic contacts each having a contact
spot at its center surrounded by a non-contact region.

It must also be noted that the macroscopic non-
contact region consists of two regions, viz. a region
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F16. 1. Schematic diagram of a contact.

Foil softness was found to be more significant than
thermal conductivity in reducing contact resistance. A
series of experiments were conducted by Fletcher et al.
[8,9] to determine the effect of a metallic interstitial
plate on thermal contact conductance. They presented
thermal conductance data for contacts with interstitial
materials in evacuated environments, and the results
were categorized with emphasis on the suitability of
interstitial materials for thermal control applications.
Veziroglu et al. [10] investigated experimentally the
effect of very thin plates between mating surfaces and
of contact pressure upon the thermal contact conduc-
tance, and developed a theory for the prediction of
contact conductance by modifying a relationship ob-
tained by Cetinkale (Veziroglu) and Fishenden [11].
In the work presented herein, an analysis has been
carried out for.the prediction of the thermal contact
conductance with interstitial plates, and a theoretical
expression has been developed in terms of the known
properties and parameters. The comparison of the

where both sides of the plate are in continuous touch
with the interstitial fluid contained within the waviness
troughs of the contact surfaces (region A,, Fig. 2), and
a region where on one side, the plate is in continuous
touch with the fluid and at the other side is in touch
with the roughness asperities of the opposite surface
(regions Ag and Ag,, Fig. 2). Region 4, of Fig. 2 is
the macroscopic contact region. The distances 4,,; and
Amz (Fig.2) are the waviness wavelengths for the
surfaces 1 and 2 respectively.

For simplicity both the macroscopic and microscopic
contact elements are assumed to be made up of two
cylindrical solids having a circular contactin the middle
of their surfaces (bases) facing each other (Fig. 3), with
the gap between them filled with a material of uniform
conductance.

3. CONTACT ELEMENT CONDUCTANCE

Let the contact element of Fig. 3 refer to a macro-
scopic contact element. It will be assumed that the
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contact region “c” and the non-contact region “n” con-
sist of materials of uniform conductance or conduc-
tivity, including the interstitial plate. Then if the r-axis
divides the gap J,, into two gaps d,; and J,,, defined
as follows

ka
Om1 =——8 1
1 k1+k2 m ()
ky
Omz = m 2
2 ki+k;, @
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F1G. 4. Geometry of the
problem.

the system becomes symmetrical with respect to r-axis
from the heat transfer point of view. Since there is an
axial symmetry too, it suffices to consider the quarter
region, (Z, 0, r), only, Fig. 4.

A dimensionless temperature distribution in solid 1
must satisfy the Laplace’s equation

62T+16T aZT_O 3
ot FoF 0Z% 4

where T = T/Sa,7 = r/a,Z = z/a, a the contact element
radius and S is the temperature slope at z — c0. The
boundary conditions of the problem can be written as
follows:

8T, Z -

—(OT’—)=O 0<Z<w (4a)
oF

T, Z -

6_’1L1_,_)=0 0<Z<w (4b)
or

oT(,

——gfzﬁ)ﬂ 0<i<l 40)

oTF0)

_‘a(_rz—)=” 0<F<l (4d)

where the dimensionless heat-transfer coefficient
h(=ha/k) is defined as h="h, when 0 <7 < C and
h=h,whenC<7<l.

The temperature distribution which satisfies equa-
tion (3) and the boundary conditions (4a, b, ¢) is given
by

a0 . _
T(F,Z)=Z+Do— Y, DaJo(BuF)e " n”

n=1

©)

where Dy and D,’s are constants to be determined;
and the eigen-values f, are given as the roots of the
equation

JiB)=0, n=12,3....

(©)
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The constant Dy is found to be

1+2CHs—Fa) 3 g—"Jl(ﬂnC)

n=1
CXhy—h,) +h,
where D,’s are the solutions of the following set of

linear equations which are obtained from the boundary
condition (4d).

Do = (7

Ay = A1 D1+ a2 Dy ...+ Gy Dy
m=123...;n=1,23..) (8

where
(B0
o Bn(Co (s — o)+ ) )
e y Bt o)
amp = —2_ ( (ﬁmc) +J1(ﬂmc)) (E ) JO(Bm)
2C hy,—h,
TR Cllh—F) ke JH(BnC) (10)
whenm=n=1,2,3...and
Amn = ﬁ ﬂ (BmJO(Bn (ﬁmc)) - BnJO(BmC)Jl(Bn C)
Ftb— )J (ﬂn Jl(ﬂmc) (11)
Bmﬂn Cz(ﬁb‘ha) +ha
when m # n.

Thus the temperature distribution in a contact
element can be obtained by combining the solution of
equation (8) with equations (5) and (7).

The additional dimensionless temperature drop AT
to overcome the thermal resistance of contact is given

by,
_ A _ 0T
AT lim ( Z@Z)

Sa Z- o

(12)

The thermal contact conductance per unit area can
be obtained from its definition, i.e.

Sk

= 13
u=oT (13)
From equations (5), (12) and (13), the thermal con-
ductance per unit area of a contact becomes
= lf L (14)

a Do

Since the conductance components of solid 1 and
solid 2 are in series, the overall contact conductance
per unit area becomes

ks

m = 15
Um = S e (15)
where the average thermal conductivity k; is defined as
2 1 1
= 16
ks ki ka (16)

Then the dimensionless contact conductance can be
written as
B,
2Dm0

Un = (17)
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where
U O
U, = 18

i {18)
and

Om

B, =— (19)
am

“ t)

where the subscript refers to the macroscopic
contact element. The dlmensionless parameter D, of
equation (17) is the same as D, given by equation (7).

4, PARAMETERS OF CONDUCTANCE EQUATION

In order to make use of equations (17) and/or (18)
and compute the thermal contact conductance of a
contact having an interstitial plate, the variables a,,
Oms B and Dpo, and C,, g and Ay, (see equation (7))
must be calculated using the known thermophysical
and surface properties.

4.1. Parameters for overall conductance
Considering the actual and the assumed shapes of
the cross-sections of the macroscopic contact element,
we can define an effective macroscopic contact element
radius as
- )’ _ 2
Am1Am2 = Tdm

am = \/(;"ml j-ml/n)- (20)

From [12], the effective gap thickness for the macro-
scopic contact element becomes,

O = 0.46(3m1 4 Om2) + 6; (21)

where 6,,; and J,,; are the center line averages of the
macro-roughness of the surfaces 1 and 2 respectively,
and ¢, is the effective plate thickness. Since the fluid
thermal conductivity governs the heat flow in the gap,

J; becomes 5, = th ks (22)

where t is the plate thickness, k, the effective fiuid
thermal conductivity, and k, the plate thermal con-
ductivity.

The constriction number for the macroscopic contact
element is given by

Crn = bunfthm. (23)

The effective contact element radius a, is given by
equation (20). The effective contact region radius b,
can be calculated from the contact region area. Since,
in general, the radii of curvature of the macro-
roughness are large, the deformation causing the con-
tact regions will be elastic and the contact region area
will be elliptical with the following semiaxes [13],

I 1—v? 1—y2\ |23
3P/lm1,1,,.2< EV1+TV2*>W
Ji=w ! 2 (24)
(: 1)
2l —+—
1 P2
and
-11/3
3P/1,,, Am
Ja=y (25)
_ (,: —) |
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where P is the apparent contact load per unit area,
v, and v, the Poisson’s ratios for the solids 1 and 2
respectively, E; and E, moduli of elasticity for the
two solids, p; and p, the radii of curvature of the
surface waviness for the surfaces 1 and 2, and the
coeflicients w and ¥ are given in Table 1.

Table 1. Semiaxes coefficients

0= cos"[—~——p2 p1:| ® ¥
P2tp
30° 2.731 0.493
40° 2.136 0.567
50° 1.754 0.641
60° 1.486 0.717
70° 1.284 0.802
80° 1.128 0.893
90° 1.000 1.000

Considering the area of the elliptical contact region
and that of the equivalent circle, the effective contact
region radius b,, becomes,

b = JJ1—J2).

As can be seen from Fig. 1, the dimensionless
effective heat-transfer coefficient for the macroscopic
contact region is the resultant of those produced by
microscopic contacts on each side of the interstitial
plate plus the interstitial plate itself, viz.

(26)

_ O 1

S S

Tk 1 ot 1
+

27

uul kt uul
where u,,; and u,, are the thermal contact conductances
per unit area for the microscopic contacts on surface 1
and surface 2 sides of the plate respectively.

The dimensionless effective heat-transfer coefficient
for the macroscopic no-contact region can be written
as the mean of three heat-transfer coefficients as follows
(see Fig. 2),

_ & Aaha+Aabhab+Abahba
T ke At At Asa

where A, is the total area covered by the region having
no microscopic contacts and h, the corresponding
heat-transfer coefficient, A, the total area covered by
the region having microscopic contacts only at the
surface 1 side of the plate and h,, the corresponding
heat-transfer coefficient, and A,, the total area covered
by the region having microscopic contacts only at the
surface 2 side of the plate and h,, the corresponding
heat-transfer coefficient.

From a study of Fig. 2, the three areas included in
equation (28) can be calculated from

ha

(28)

Ao = (Am1 ~2J1){(Am2 — 2J>2) (29)
A = J1Q2Any —1J>3) (30)

and
Aba = J2(2Am1 —1J 1) @31

From a study of Fig. 1, the three heat-transfer
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coefficients included in equation (28) becomes,
‘51 t 52>_l
he=|—4—+— 32
<k1+kr+kf) 2
1t 8\
=(—+—+2 33
hab <u;111 + kt + kf) ( )
and
5t 1\!
hoo = —+—+— 34
b (k,+k,+u;2> G4

whereu}; and ul; are the thermal contact conductances
of the microscopic contact elements in regions of A
and A,, respectively.

4.2. Parameters for microscopic conductances

Using the subscript u for the microscopic contacts,
from equations (17) and (18), the thermal contact con-
ductance per unit area for a given microscopic contact
element becomes,

Bk,
Uy = ——.
2D,04,
The relationships needed to calculate the various
parameters in equations (7) and (35) will now be given.

From equation (16), the relationships for the effective
solid thermal conductivities becomes,

(33)

2
ku=——7> (foru, and 1) (36)
ke
or
2 1
k, = — (for w,, and ul,) (37
_.‘+—
ky ki

From [11], the effective gap thicknesses for the micro-
scopic contact elements become,

8, = 3.56(8,1 +d,), (for u,;, and usy) (38)

and

8, = 3.56(8,2 +8,), (for u,, and ul;) (39)

where J,; and J,; are the centerline averages of the
micro-roughness of the surfaces 1 and 2, and 6, is the
centerline average of the micro-roughness of the plate.

Since the micro-roughness asperities have small radii
of curvature, they yield by means of plastic flow under
load. The load between the surfaces 1 and 2 is supported
within the macroscopic contact region. Hence the con-
striction number for the conductances u,; and u,»
becomes,

C, = J(P/M) (40)

where P is the contact load per unit area and M the
Meyer hardness of the softer of the solids 1 or 2.

For the microscopic contacts in the non-contact
region, the constriction number would change from
C, near the contact region to almost zero at the point
half a wavelength away from the center of the contact
region. Hence, for the conductances u}; and ul,, the
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mean constriction number can be taken as,
Cl=05C,
or
Ci=05./(P/M). (41)

The gap numbers for the thermal conductances of
the microscopic contact elements can be calculated
from [11],

B, = 0.335(¢0:31550-137 42)

where C, = C, for u,q and u,,, C, = C} for u}, and
ulz, and the size number S, can be computed from
Szt = ‘\//(A)/éu

where A is the total apparent contact area.
Considering that the components of the heat-transfer

coefficients in the actual contact are in series, the heat-

transfer coefficients for the actual contact becomes,

43)

‘5t 5::1\ -t i
hnb = | = (for Uyt and “nl) (44)
ke ky

and

5 bua)\!
hubz(—w ) Gorupanduly)  (49)
ke k»

For the microscopic contact eclements, only the
interstitial fluid has to be considered with regard to
the heat-transfer coefficients of the non-contact region.
Consequently, they become,

ks
51(

where &, is given by equation (38) for u,, and ui, and
by equation (39) for u,, and ul,.

hua = (4‘6)

5. COMPARISON OF THEORY WITH EXPERIMENTS

The variation of thermal conductance with plates
between contact surfaces and apparent contact
pressure, for 8T-42 steel having surface roughness in
the form of parallel grooves has been investigated.
The details of this study are given in [14]. Experimental
data have been obtained for seven different test plates
{viz. aluminum, brass, silver, tin, copper, gold and mica)
by varying the contact loads. The experimental results
areshown on Figs. 5 and 6 together with the theoretical
results of contact conductance as a function of interface
pressure for different interstitial plates. It can be seen
that a good agreement is obtained between theory and
the experimental results, with the exception of the
results for mica. Visual inspection of the interface,
after testing the mica, revealed that the contact load
caused the mica to crack permitting metal-to-metal
bridges to be formed thus resulting in higher con-
ductances.

In the literature a limited amount of contact con-
ductance data with interstitial plates has been pub-
lished. These data have been reviewed and only those
which satisfy the underlying assumptions for the model
(i.c. those presented in [6, 8, 9]) have been compared
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with the theory. The comparisons are given in Figs.
7 and 8. As seen from the figures, there is a good
agreement between the theory and the experimental
result of various investigators.

CONCLUSION

The assumed model for the study of the thermal
conductance of contacts having interstitial plates, and
the theory developed therefrom agree well with the
experimental results for many materials with the
exception of mica.
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ETUDE DE LA CONDUCTANCE THERMIQUE DE CONTACT
AVEC PLAQUES INTERSTICIELLES

Résumé—On a effectué une étude analytique et expérimentale en vue d'évaluer la conductance de contact
de plaques intersticielles et une expression de la conductance a été obtenue en fonction des paramétres et
des propriétés connues. Le modéle suppose que linterface est constitué d'éléments de contact
macroscopiques et microscopiques de constitution similaires. Ces ¢léments comprennent deux solides
cylindriques présentant un contact circulaire en leur milieu, les surfaces en regard étant séparées par un
intervalle rempli d’'un matériau de conductance uniforme. Les prévisions théoriques sont comparées
avec les données expérimentales disponibles. Un bon accord a été trouvé entre valeurs théoriques et
expérimentales pour la conductance thermique de contact avec plaques interticielles. La théorie montre
que la COnGUC{&ﬂCC merquue GC contact acpenu IQr{EmCﬂ{ G€ la GUI'CU:? et GE Ed LOHOUC“V][C memuquc
des plaques intersticielles ainsi que de la texture de la surface des éléments de contact et des plaques
intersticielles.

ANALYSIS DES THERMISCHEN LEITUNGSWIDERSTANDES VON KONTAKTPLATTEN

Zusammenfassung — Es wurde eine analytische und experimentelle Analyse durchgefiihrt fiir die Bestim-
mung des thermischen Leitungswiderstandes von Kontaktplatten, und aus bekannten Eigenschaften und
Parametern wird eine Beziehung formuliert. Im Modell wird angenommen, da die Kontaktflichen aus
dhnlichen makroskopischen und mikroskopischen Kontaktelementen zusammengesetzt sind. Diese
Elemente sollen aus zwei zylindrischen Festkorpern bestehen, die kreisformigen Kontakt aufweisen im
Mittelpunkt threr einander zugewandten Oberflichen und einem Zwischenraum, der mit einem Material
einheitlicher Wérmeleitfahigkeit ausgefiillt ist. Die theoretischen Ergebnisse wurden mit experimentellen
Werten aus der Literatur verglichen. Es ergab sich gute Ubereinstimmung zwischen den theoretischen
und experimentellen Werten fiir den thermischen Leitungswiderstand. Die Theorie zeigt, daB der
Leitungswiderstand eine ausgeprégte Funktion der Harte und der thermischen Leitfdhigkeit der Kontakt-
platten ist, sowie auch der Oberflichenform der Kontaktelemente und der Platten.

AHAJIN3 TEILIONMPOBOJHOCTH KOHTAKTOB CO BCTABKAMHU

Amnotamus — IpoBeaeHO TEOpeTHYECKOE M IKCIIEPHMEHTANLHOE MCCNEAOBAHKME ¢ LENBIC Onpele-
JIEHHS TEMICTIPOBOAHOCTH KOHTAKTOB C NPOMEXKYTOYHBIMH TNACTHHAMH M NOSYYEHO BbIpAXEHHE
JNS MIBECTHBIX CBOHCTB M napameTpoB. B npuHATON Moaenu npeAnonaraercs, YTO MOBEPXHOCTH
pa3fena COCTOUT M3 OOUHAKOBLIX MAKPOCKOMUYECKMX H MHKPOCKONKYECKHX KOHTAKTHBIX 3JIEMEHTOB.
CHuTAIOT, 4TO0 3TH 3/IEMEHTHI COCTORT M3 ABYX LHAMHAPHYECKHX TBEPABIX T/ C KPYT'OBBHIM KOHTAKTOM
B ceépennHe HX oOpaLieHHBIX APYT K APYTY IOBEPXHOCTEH, IPOMEXYTOK MEXAY KOTOPHIME 3anO/iHeH
MATEpHANIOM C NOCTOSHHOM TENJIONPOBOAHOCTEIO. TEOPETHYECKHE PacueThl CPABHMBAJIHCh C HMe-
IOLMMHKCA B THTEpaType AaHHbIMH. OBHAPYXKEHO XOpOLUee COOTBETCTBHE MEXAY TEOPETHHECKHMHU M
IKCMNEPHMEHTATIbHBIMU 3HAYEHHAMHU TENUIONPOBOAHOCTH KOHTAKTOB €O BCTaBkamH, TeopeTnyeckuii
aHaliA3 IOKA3biBAET, YTO TEHIONPOBOAHOCTh KOHTAKTOB CHIBHO 3aBHCHT OT TBEPAOCTH M TENAONPO-
BOLHOCTH IPOMEXY TOUHBIX TIAACTHH, 3 TAKXKE OT NOBEPXHOCTHON CTPYKTYPbI KOHTAKTHBIX 3/IEMEHTOB
¥ TIPOMEKYTOYHBIX NNACTHH.,



