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Abstract-An analytical and experimental analysis has been carried out for the prediction of contact 
conductance with interstitial plates and an expression has been developed in terms of known properties 
and parameters. Themodel assumes that the interface is composed ofsimilar macroscopic and microscopic 
contact elements. These elements are considered to be made up of two cylindrical solids having a circular 
contact in the middle of their surfaces facing each &her with the gap between them filled with a 
material of uniform conductance. Theoretical predictions are compared with experimental data in the 
literature. Good agreement is found between theoretical and experimental values for thermal contact 
conductance with interstitial plates. The theory shows that thermal contact conductance is a strong 
function of hardness and thermal conductivity of interstitial plates as well as the surface texture of 

contact element: and interstitial plates. 

NOMENCLATURE 

4 total apparent contact area; 

& fluid thickness number, 6/u; 

c, constriction number. b/a; 

D, coefficient of series expansion; 

E, modulus of elasticity [kgr/cm2]; 
JI, J2, semiaxes of contact region; 

K 
M, 
p, 

QT 
S, 

k//k,, conductivity number; 
Meyer hardness [k&/cm’] ; 
apparent contact load per unit area 

[kg&m21; 
heat flow rate [W]; 
temperature slope at z + co [K/cm], size 

number; 

temperature [“Cl; 

conductance number, Us/k: 

contact element radius [ml; 

contact region radius [m]; 
heat-transfer coefficient [w/cm2 K]; 

thermal conductivity [W/cm K]; 
amplitude [cm]; 

pressure [kgr/cm2]; 
radius [m]; 
plate thickness [m] ; 
thermal contact conductance [W/cm2 K]; 
cylindrical coordinates. 

Greek symbols 

!I 
eigen-values; 
gap thickness, roughness, effective fluid 
thickness; 

Pt radius of curvature [m]; 
E., wavelength [p] ; 
“9 Poisson’s ratio. 

*Presently, Visiting Professor in the Department of Mech- 
anical Engineering, University of Miami, Coral Gables, 
Florida, U.S.A. 
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Subscripts 

0, original; 

1, solid 1; 

2, solid 2; 

0, actual ; 
c 

i 

contact; 
fluid; 

m, macroscopic, mean; 

P. plate; 

s, mean f. 
The meanings of other symbols are given in the text 

as they occur. 

1. INTRODUCXION 

THE BASIC cause of interface resistance is unevenness 
of real surfaces. Surfaces which are said to be flat, in 

fact are wavy with regular pitch owing to the periodic 
nature of machining processes. Therefore, when two 
solid surfaces are brought into contact, they actually 

touch only at a limited number of spots, the aggregate 
area of which is usually only a small fraction of the 
apparent contact area. The remainder of the space 
between the surfaces may be filled with air or another 
fluid, or may be in vacuum. When heat flows from one 
metal to the other, flow lines converge toward the 
actual contact spots, since tt% thermal conductivities 
of metals are so much greater than those of fluids. 
This converging of the flow lines causes the thermal 
contact resistance which is usually high compared to 
the resistances ofl’ered to heat flow away from the 
contact spots. 

The importance of the problem of the interfacial 
conductance (or resistance) has.attracted the attention 
of many researchers [l-S] in the last few decades. One 
important problem is the controlling (increasing or 
decreasing) thermal contact conductances by intro- 
ducing interstitial plates between the contact surfaces. 
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A method of increasing the thermal contact conduc- 
tance by filling the interfacial gap with highly con- 
ducting materials was investigated by Cunningham 
f6]. Joints made of aluminum and magnesium with 
indium foil, silicone vacuum grease and filler grease as 
interstitial fiilers, were tested in vacuum for contact 
pressures between 1200 and 6720N.me2. The inter- 
stitial materials of indium foil and vacuum grease 
produced approximately tenfold increases in thermal 
conductance compared to unfilled joints. James and 
Barry [7] indicated that the thermal conductance 
between metal surfaces in contact can be increased by 
placing metallic foils between the contacting surfaces. 
Lead, aluminum, indium and copper foils were tested 
between mild steel surfaces at low contact pressures. 

YCINCO and S. KAKAC 

experimental results with the theory revealed good 
agreement for all the test plates--with the exception 
of mica-and for all test conditions. 

2. DESCRIPTION OF MODEL 

For the theoretical study, the interface is assumed 
to be composed of a number of similar “macroscopic” 
contact elements, each having a load bearing contact 
region at its center surrounded by a non-contact 
region (see Fig. 1). Furthermore, each macroscopic 
contact region can be assumed to be made up of a 
number of microscopic contacts each having a contact 
spot at its center surrounded by a non-contact region. 

It must also be noted that the macroscopic non- 
contact region consists of two regions, viz. a region 

MACROSCOPIC CONTACT ELEMENT 

MICROSCOPfC LOAD MICROSCOPIC NON LOAD 
BEARING CONTACT ELE. BEARING CONTACT ELE. 

FIG. 1. Schematic diagram of a contact 

Foil softness was found to be more significant than 
thermal conductivity in reducing contact resistance. A 
series of experiments were conducted by Fletcher et al. 
[S, 91 to determine the effect of a metallic interstitial 
plate on thermal contact conductance. They presented 
thermal conductance data for contacts with interstitial 
materials in evacuated environm~ts, and the results 
were categorized with emphasis on the suitability of 
interstitial materials for thermal control applications. 
Veziroglu et al. [lo] investigated experimentally the 
effect of very thin plates between mating surfaces and 
of contact pressure upon the thermal contact conduc- 
tance, and develop&d a theory for the prediction of 
contact conductance by modifying a relationship ob- 
tained by Cetinkale (Vezirofilu) and Fishenden [ll]. 

In the work presented herein, an andlysis has been 
carried out for the prediction of the thermal contact 
conductance with interstitial plates, and a theoretical 
expression has been developed in terms of the known 
properties and parameters. The comparison of the 

where both sides of the plate are in contil~uous touch 
with the interstitial fluid contained within the waviness 
troughs of the contact surfaces (region A,, Fig. 2), and 
a region where on one side, the plate is in continuous 
touch with the fluid and at the other side is in touch 
with the roughness asperities of the opposite surface 
(regions Aab and Aba, Fig. 2). Region Ah of Fig. 2 is 
the macroscopic cantact region. The distances A,,, 1 and 
Rmz (Fig. 2) are the waviness wavelengths for the 
surfaces 1 and 2 respectively. 

For simplicity both the macroscopic and microscopic 
contact elements are assumed to be made up of two 
cylindrical solids having a circular contact in the middle 
of their surfaces (bases) facing each other (Fig. 3), with 
the gap between them filled with a material of uniform 
conductance. 

3. CONTACT ELEMENT CONDUCTANCE 

Let the contact element of Fig. 3 refer to a macro- 
scopic contact element. It will be assumed that the 
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FIG. 3. Contact element. 

contact region “c” and the non-contact region “n” con- 
sist of materials of uniform conductance or conduo 
tivity, including the interstitial plate. The% if the r-axis 
divides the gap 6, into two gaps &,I and 6,2 defined 
as follows 

&1 = 
k2 

----&I 
h+kz 

&I2 = 
kl 

----In 
kl+kz 

(2) 

2 

a 

p? 
r , 

- 
JII rl_l 

FIG. 4. Geometry of the 
problem. 

the system becomes symmetrical with respect to r-axis 
from the heat transfer point of view. Since there is an 
axial symmetry too, it suffices to consider the quarter 
region, (Z, 0, r), only, Fig. 4. 

A dimensionless temperature distribution in solid 1 
must satisfy the Laplace’s equation 

-I$+;-&+~=0 (3) 

where T = TjSa, r; = r/a, .Z = z/a, a the contact element 
radius and S is the temperature slope at z + co. The 
boundary conditions of the problem can be written as 
follows : 

aqo, 2) 
-= 

a? 
o o<z<co (44 

am,3 = o 

a? 
o<z<co VW 

aT(r, CO) 
-= 

az ’ O<F<l (4c) 

aT(F,o) 
-----=jjhT 
az 

o<r<1 

where the dimensionless heat-transfer coefficient 
li( = ha/k) is defined as h = tib when 0 < f < C and 
h=h.whenC<i;<l. 

The Jemperature distribution which satisfies equa- 
tion (3) and the boundary conditions (4a, b, c) is given 

by 

T(F,Z)= Z+Do- f dnJo(fi,r)e-V (5) 
II31 

where Do and D.‘s are constants to be determined; 
and the eigen-values p,, are given as the roots of the 
equation 

JI (B”) = 0, n= 1,2,3... . (6) 
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The constant Do is found to be where 

Do = 

1+2C(t;,-I;,) t ?J,(p.C) 
n=l n 

(7) and 
C?(hb -h,) -I- I;, 

where D,‘s are the solutions of the following set of 
linear equations which are obtained from the boundary 
condition (4d). 

a,=a,lD1+a,zDz...+a,,D, 

(m=1,2,3...; n=l,2,3...) (8) 

where 

JIULC) 
am = jL&2(hb-hh,)+hb) (9) 

amn =~(J1(P~C)+J:(B.C))+:~J1(8.) 

2c 
pi c$_--;;+ haJ:ULC) (1’4 

whenm=n=1,2,3...and 

amn = ~(B.J~(P.C)J,(8~C))-P,J,(P.C)J,Y.C) 
m n 

when m # n. 
Thus the temperature distribution in a contact 

element can be obtained by combining the solution of 
equation (8) with equations (5) and (7). 

The additional dimensionless temperature drop AT 
to overcome the thermal resistance of contact is given 

by, 

The thermal contact conductance per unit area can 
be obtained from its definition, i.e. 

Sk 

From equations (5), (12) and (13), the thermal con- 
ductance per unit area of a contact becomes 

k 1 
u=--_. 

a DO 

The effective contact element radius a, is given by 
equation (20). The effective contact region radius b, 
can be calculated from the contact region area. Since, 
in general, the radii of curvature of the macro- 
roughness are large, the deformation causing the con- 
tact regions will be elastic and the contact region area 
will be elliptical with the following semiaxes [13], 

Since the conductance components of solid 1 and 
solid 2 are in series, the overall contact conductance 
per unit area becomes 

ks 
um =a (15) 

where the average thermal conductivity k, is defined as 

$=i,L. 
s k, k2 and 

Then the dimensionless contact conductance can be 
written as 

(18) 

B,=6, 
a, 

(19) 

where the subscript “m” refers to the macroscopic 
contact element. The dimensionless parameter DmO of 
equation (17) is the same as Do given by equation (7). 

4. PARAMETERS OF CONDUCTANCE EQUATION 

In order to make use of equations (17) and/or (18) 
and compute the thermal contact conductance of a 
contact having an interstitial plate, the variables a,, 

&,, B, and D,o , and C,, &,, and h,,& (see equation (7)) 
must be calculated using the known thermophysical 
and surface properties. 

4.1. Parameters for ooerall conductance 
Considering the actual and the assumed shapes of 

the cross-sections of the macroscopic contact element, 
we can define an effective macroscopic contact element 
radius as 

irnI I?,~ = 7caf 

a, = J(& &/z). (20) 

From [12], the effective gap thickness for the macro- 
scopic contact element becomes, 

6, = 0.46(6,1+6m2) + 6, (21) 

where 6 ml and d,z are the center line averages of the 
macro-roughness of the surfaces 1 and 2 respectively, 
and 6, is the effective plate thickness. Since the fluid 
thermal conductivity governs the heat flow in the gap, 
S, becomes 

6, = tk,Jk, (22) 

where t is the plate thickness, kf the effective fluid 
thermal conductivity, and k, the plate thermal con- 
ductivity. 

The constriction number for the macroscopic contact 
element is given by 

C, = b, Jum. (23) 

1’3 

Jz = ti 

1 

(25) 
&I 

u, = ~ 
2&o 

(17) 
L \p1 P2/ -I 
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where P is the apparent contact load per unit area, 
v1 and v2 the Poisson’s ratios for the solids 1 and 2 
respectively, Er and Ez moduli of elasticity for the 
two solids, p1 and p2 the radii of curvature of the 
surface waviness for the surfaces 1 and 2, and the 
coefficients w and $ are given in Table 1. 

Table 1. Semiaxes coefficients 

e=cos-’ 2 
[ I 0 

30” 2.731 0.493 
40” 2.136 0.567 
50” 1.754 0.641 
60” 1.486 0.717 
70” 1.284 0.802 
80 1.128 0.893 
90” 1 .OOo 1.000 

Considering the area of the elliptical contact region 
and that of the equivalent circle, the effective contact 
region radius b, becomes, 

bm = JCJI -52). (26) 

As can be seen from Fig. 1, the dimensionless 
effective heat-transfer coefficient for the macroscopic 
contact region is the resultant of those produced by 
microscopic contacts on each side of the interstitial 
plate plus the interstitial plate itself, viz. 

(27) 

where u,,l and u,,z are the thermal contact conductances 
per unit area for the microscopic contacts on surface 1 
and surface 2 sides of the plate respectively. 

The dimensionless effective heat-transfer coefficient 
for the macroscopic no-contact region can be written 
as the mean of three heat-transfer coefficients as follows 
(see Fig. 2), 

ha = ~A.h.+Aath+As.hs. 
s A,+&b+Abn 

(28) 

where A. is the total area covered by the region having 
no microscopic contacts and h, the corresponding 
heat-transfer coefficient, A& the total area covered by 
the region having microscopic contacts only at the 
surface 1 side of the plate and h& the corresponding 
heat-transfer coefficient, and Aba the total area covered 
by the region having microscopic contacts only at the 
surface 2 side of the plate and hba the corresponding 
heat-transfer coefficient. 

From a study of Fig. 2, the three areas included in 
equation (28) can be calculated from 

(29) 

(30) 

and 

.‘b. = 52(2&,1 -~JI) (31) 

From a study of Fig. 1, the three heat-transfer 

coefficients included in equation (28) becomes, 

h, = ($+t+$,-’ 

h,b = (&+;+$)-l 

and 

(32) 

(33) 

(34) 

where ub 1 and uj2 are the thermal contact conductances 
of the microscopic contact elements in regions of Ad 
and Ab,, respectively. 

4.2. Parameters for microscopic conductances 
Using the subscript p for the microscopic contacts, 

from equations (17) and (18), the thermal contact con- 
ductance per unit area for a given microscopic contact 
element becomes, 

B,k, 
up=20,06,. (35) 

The relationships needed to calculate the various 
parameters in equations (7) and (35) will now be given. 
From equation (16), the relationships for the effective 
solid thermal conductivities becomes, 

2 
k, = - 

1 1’ 
(for U,,I and U!I) (36) 

or 

iF+ii- 1 f 

2 
kp=--, 

$+k 

(for u,,z and uj2) (37) 

2 * 

From [ 111, the effective gap thicknesses for the micro- 
scopic contact elements become, 

6, = 3.56(S,, +&), (for uP1 and u:r) (38) 

and 

6, = 3.56(6,2 +&), (for ur2 and uj2) (39) 

where 6,r and dP2 are the centerline averages of the 
micro-roughness of the surfaces 1 and 2, and 6, is the 
centerline average of the micro-roughness of the plate. 

Since the micro-roughness asperities have small radii 
of curvature, they yield by means of plastic flow under 
load. The load between the surfaces 1 and 2 is supported 
within the macroscopic contact region. Hence the con- 
striction number for the conductances u,,r and ua2 
becomes, 

C,= JUW) 
where P is the contact load per unit area and M the 
Meyer hardness of the softer of the solids 1 or 2. 

For the microscopic contacts in the non-contact 
region, the constriction number would change from 
C, near the contact region to almost zero at the point 
half a wavelength away from the center of the contact 
region. Hence, for the conductances u:r and ub2, the 
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FIG. 5. Thermal contact conductance of 
interstitial materials. 
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mean constriction number can be taken as, 

ct = OX,, 

or 

C; = 0.5 ,,/(P/M). (41) 

The gap numbers for the thermal conductances of 
the microscopic contact elements can be calculated 
from [ll], 

B,, = 0.335C;.3’5S,:.‘37 (42) 

where C,, = C,, for u,,~ and uIL2, C,, = Ci for ufil and 
&, and the size number S,, can be computed from 

s,, = &W,, (43) 

where A is the total apparent contact area. 
Considering that the components of the heat-transfer 

coefficients in the actual contact are in series, the heat- 
transfer coefficients for the actual contact becomes, 

and 

@or u,,2 a-d uh) (45) 2. 

For the microscopic contact elements, only the 
interstitial fluid has to be considered with regard to 
the heat-transfer coefficients of the non-contact region. 
Consequently, they become, 

where a,, is given by equation (38) for uel and &it, and 
1 by equatton (39) for u,,~ and u,,~. 

5. COMPARISON OF THEORY WITH EXPERIMENTS 

The variation of thermal conductance with plates 
between contact surfaces and apparent contact 
pressure, for ST-42 steel having surface roughness in 
the form of parallel grooves has been investigated. 
The details of this study are given in [14]. Experimental 
data have been obtained for seven different test plates 
(viz. aluminum, brass, silver, tin, copper, gold and mica) 
by varying the contact loads. The experimental results 
are shown on Figs. 5 and 6 together with the theoretical 
results of contact conductance as a function of interface 
pressure for different interstitial plates. It can be seen 
that a good agreement is obtained between theory and 
the experimental results, with the exception of the 
results for mica. Visual inspection of the interface, 
after testing the mica, revealed that the contact load 
caused the mica to crack permitting metal-to-metal 
bridges to be formed thus resulting in higher con- 
ductances. 

In the literature a limited amount of contact con- 
ductance data with interstitial plates has been pub- 
lished. These data have been reviewed and only those 
which satisfy the underlying assumptions for the model 
(i.e. those presented in [6, 8, 91) have been compared 

with the theory. The comparisons are given in Figs. 
7 and 8. As seen from the figures, there is a good 
agreement between the theory and the experimental 
result of various investigators. 

CONCLUSION 

The assumed model for the study of the thermal 
~onduct~ce of contacts having interstitia1 plates, and 
the theory developed therefrom agree well with the 
experimental results for many materials with the 
exception of mica. 
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ETUDE DE LA CONDUCTANCE THERMIQU~ DE CONTACT 
AVEC PLAQUES INTERSTICIELLES 

Rl?sume-On a effect&e une etude analytique et experimentale en vue d’evaluer la conductance de contact 
de plaques intersticielfes et une expression de la conductance a bte obtenue en fonction des parambtres et 
des proprietes connues. Le mod& suppose que i’interface est constitut d’elements de contact 
macroscopiques et microscopiques de constitution similaires. Ces elements comprennent deux sohdes 
cyhndriques presentant un contact circulaire en leur milieu, les surfaces en regard &ant separees par un 
intervalle rempli d’un materiau de conductance uniforme. Les previsions theoriques sont comparees 
avec les donnees experimentales disponibles. Un bon accord a et& trouve entre valeurs theoriques et 
exp~rimentales pour la conductance thermique de contact avec plaques interticielles. La theorie montre 
que la conductance thermique de contact depend fortement de la dureti et de la conduciivite thermique 
des plaques intersticielles ainsi que de la texture de la surface des elements de contact et des plaques 

intersticielles. 

ANALYSIS DES THERMISCHEN LEITUNGSWIDERSTANDES VON KONTAKTPLATTEN 

Zu~mmenfn~~g-Es wurde eine anafytische und experimentelie AnaIyse durchgeftihrt fur die Bestim- 
mung des thermischen ~itungswiderstandes von Kontaktplatt~, und aus bekannten Eigenschaften und 
Parametern wird eine Beziehung formuliert. Im Model1 wird angenommen, dag die KontaktflLhen aus 
lhnlichen makroskopischen und mikroskopischen Kontaktelementen zusammengesetzt sind. Diese 
Elemente sollen aus zwei zyhndrischen Festkiirpern bestehen, die kreisfiirmigen Kontakt aufweisen im 
Mittelpunkt ihrer einander zugewandten Oberflachen und einem Zwischenraum, der mit einem Material 
einheitlicher W~rmeleitf~h~gkeit ausgefiiht ist. Die theoretisehen Ergebnisse wurden mit experimentellen 
Werten aus der Literatur verglichen. Es ergab sich gute Ubereinstimmung zwischen den theoretischen 
und experimentellen Werten fiir den thermischen Leitungswiderstand. Die Theorie zeigt, daR der 
Leitungswiderstand eine ausgepriigte Funktion der Hkte und der therm&hen Leitfahigkeit der Kontakt- 

platten ist, sowie such der Obertlachenform der Kontaktelemente und der Flatten. 

AHAJIM3 TEI-IJIOIIPOBO~HOCTI4 KOHTAKTOB CO BCTABKAMM 

AIIUOT~U~~~-- nQOBe~eH0 TeOQeTWWCKW W 3KCReQUMeHT~bHOe NCCncAOBaHxe C UeJfbIO Onpe&e- 

IIeHlllR TellJlOIIQOt3O~HOCTSi KOHTaKTOB C RQOMeKCyTOYHbIMH IlJ-iaCTRHaMH W IlOfiy'ieHO BbipiUKeHHe 

AJlR H3BeCTHblX CBOACTB W IIaQaMeTpOB. B IIpHHRTOfi MOLleJl)c lTQt?~llOflaraeTCfi, YTO IIOBeQXHOCTb 

Q~3~efl~COCTOH~~3O~llH~KOllbIXM~KQOCKO~~YeCKIlX~MHKQOCKOIIH~eCKHXKOHTilKTHblX3~eM~HTOB. 

~"1HflK)T,~T03TH3fleMeHTblCOCTORTH3AByXUll~~HH~QW'l~CKBXTB~QP;bIXT~CKQy~OBbIMKOHTlKTOM 

BCe~~UHeHXO6QalueHHbtX~Qy~K~QyrynOBeQXHOCTeii,~~MeXyTOKMe~~yKOTOQMMR3a~OnHeH 

MaTeQHanOM C IIOCTOKHHO~~ TeIlflOIIQOBOAHOCTb~. TeoQwurecKue QaCYeTbl CQt3BHH3aJlFiCb C HMe- 

lOlJ.WMMCII B Jl&iTt?QaTyQeLI~HHbIMII.06HapyH(eHo XOpOJ.UeeCOOTBeTCTBfieMe~~y TeOpeTllYeCKllMW H 

3KClWQHMeHTWlbHblMLI 3Ha'ieWWRMU TeIlJlOllQOBO~HOCTH KOHTZlKTOB CO BCTaBKaMW. TeopeTsvecKd4 

~H~~~3~OK~3bl5~eT,~TOTefl~O~QOBO~HOCTbKOHT~KTOBCB~bHO3~B~CNTOTTB@QAOCTH HTellJlOIIQO- 

BO~HOCTR~QOMe)lCyTOSHblX~~~CTUH,~T~K~eOT~O~QXHofTHO~CTQyKTypbIKOHTPKTHblX3~eMeHTOB 

H IIQOMeXyTO'iHblX IlJlaCTHH. 


